ЯДЕР ДЕЛЕНИЕ: РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ - ορισμός. Τι είναι το ЯДЕР ДЕЛЕНИЕ: РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι ЯДЕР ДЕЛЕНИЕ: РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ - ορισμός

Спонтанное деление ядер

ЯДЕР ДЕЛЕНИЕ: РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ      
К статье ЯДЕР ДЕЛЕНИЕ
Возможность самоподдерживающейся цепной реакции в ядерном реакторе зависит от того, какова утечка нейтронов из реактора. Нейтроны, возникающие в процессе деления, исчезают в результате поглощения. Кроме того, возможна утечка нейтронов вследствие диффузии через вещество, аналогичной диффузии одного газа сквозь другой.
Чтобы управлять ядерным реактором, нужно иметь возможность регулировать коэффициент размножения нейтронов k, определяемый как отношение числа нейтронов в одном поколении к числу нейтронов в предыдущем поколении. При k = 1 (критический реактор) имеет место стационарная цепная реакция с постоянной интенсивностью. При k 1 (надкритический реактор) интенсивность процесса нарастает, а при k < 1 (подкритический реактор) спадает. (Величина . = 1 - (1/k) называется реактивностью.)
Благодаря явлению запаздывающих нейтронов время "рождения" нейтронов увеличивается от 0,001 с до 0,1 с. Это характерное время реакции позволяет управлять ею с помощью механических исполнительных органов - управляющих стержней из материала, поглощающего нейтроны (B, Cd, Hf, In, Eu, Gd и др.). Постоянная времени регулирования должна быть порядка 0,1 с или больше. Для обеспечения безопасности выбирают такой режим работы реактора, в котором для поддержания стационарной цепной реакции необходимы запаздывающие нейтроны в каждом поколении.
Для обеспечения заданного уровня мощности используются управляющие стержни и отражатели нейтронов, но задачу управления можно значительно упростить правильным расчетом реактора. Например, если реактор спроектировать так, чтобы при увеличении мощности или температуры реактивность уменьшалась, то он будет более устойчивым. Например, при недостаточном замедлении из-за повышения температуры расширяется вода в реакторе, т.е. уменьшается плотность замедлителя. В результате усиливается поглощение нейтронов в уране-238, поскольку они не успевают эффективно замедлиться. В некоторых реакторах используется то, что из-за уменьшения плотности воды увеличивается утечка нейтронов из реактора. Еще один способ стабилизации реактора основан на нагревании "резонансного поглотителя нейтронов", такого, как уран-238, который тогда сильнее поглощает нейтроны.
Системы безопасности. Безопасность реактора обеспечивается тем или иным механизмом его остановки в случае резкого увеличения мощности. Это может быть механизм физического процесса или действие системы управления и защиты, либо то и другое. При проектировании водо-водяных реакторов предусматриваются аварийные ситуации, связанные с поступлением холодной воды в реактор, падением расхода теплоносителя и слишком большой реактивностью при пуске. Поскольку интенсивность реакции возрастает с понижением температуры, при резком поступлении в реактор холодной воды повышаются реактивность и мощность. В системе защиты обычно предусматривается автоматическая блокировка, предотвращающая поступление холодной воды. При снижении расхода теплоносителя реактор перегревается, даже если его мощность не увеличивается. В таких случаях необходим автоматический останов. Кроме того, насосы теплоносителя должны быть рассчитаны на подачу охлаждающего теплоносителя, необходимую для остановки реактора. Аварийная ситуация может возникнуть при пуске реактора со слишком высокой реактивностью. Из-за низкого уровня мощности реактор не успевает нагреться настолько, чтобы сработала защита по температуре, пока не оказывается слишком поздно. Единственная надежная мера в таких случаях - осторожный пуск реактора.
Избежать перечисленных аварийных ситуаций довольно просто, если руководствоваться следующим правилом: все действия, способные увеличить реактивность системы, должны выполняться осторожно и медленно. Самое важное в вопросе о безопасности реактора - это абсолютная необходимость длительного охлаждения активной зоны реактора после прекращения в нем реакции деления. Дело в том, что радиоактивные продукты деления, остающиеся в топливных кассетах, выделяют тепло. Оно гораздо меньше тепла, выделяющегося в режиме полной мощности, но его достаточно, чтобы в отсутствие необходимого охлаждения расплавить твэлы. Кратковременное прекращение подачи охлаждающей воды привело к значительному повреждению активной зоны и аварии реактора в Три-Майл-Айленде (США). Разрушение активной зоны реактора - это минимальный ущерб в случае подобной аварии. Хуже, если произойдет утечка опасных радиоактивных изотопов. Большинство промышленных реакторов снабжено герметическими страховочными корпусами, которые должны в случае аварии предотвратить выброс изотопов в окружающую среду.
В заключение отметим, что возможность разрушения реактора в значительной степени зависит от его схемы и конструкции. Реакторы могут быть спроектированы таким образом, что снижение расхода теплоносителя не будет приводить к большим неприятностям. Таковы различные типы газоохлаждаемых реакторов.
Спонтанное деление         
Спонта́нное деле́ние — разновидность радиоактивного распада тяжёлых атомных ядер. Спонтанное деление является делением ядра, происходящим без внешнего возбуждения (вынужденного деления), и даёт такие же продукты, как и вынужденное деление: осколки (ядра более лёгких элементов) и несколько нейтронов.
Государственное управление         
ПРИМЕНЕНИЕ ЗАКОННЫХ МЕР ВОЗДЕЙСТВИЯ НА ОБЩЕСТВО
Управление государственное; Управление государством; Госуправление

Βικιπαίδεια

Спонтанное деление

Спонта́нное деле́ние — разновидность радиоактивного распада тяжёлых атомных ядер. Спонтанное деление является делением ядра, происходящим без внешнего возбуждения (вынужденного деления), и даёт такие же продукты, как и вынужденное деление: осколки (ядра более лёгких элементов) и несколько нейтронов. По современным представлениям, причиной спонтанного деления является туннельный эффект.

Вероятность спонтанного деления растёт с увеличением числа протонов в ядре. Эта вероятность зависит от параметра Z 2 / A , {\displaystyle Z^{2}/A,} где Z — число протонов, а A — общее число нуклонов. При приближении значения этого параметра к 45 вероятность спонтанного деления стремится к единице, что накладывает ограничения на возможность существования сверхтяжёлых ядер.

Для ядер таких элементов, как уран и торий, спонтанное деление является очень редким процессом; их ядра намного чаще распадаются по другим каналам распада (значение параметра Z2/A для ядер урана и тория порядка 35). С увеличением показателя Z2/A вероятность спонтанного деления ядер быстро растёт.

Явление спонтанного деления используется в методе радиоизотопного датирования возраста ископаемых остатков, метеоритов и т.д.

Τι είναι ЯДЕР ДЕЛЕНИЕ: РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ - ορισμός